Exercise 4 - Computational Models - Spring 2012

- 1. Prove or disprove:
 - (a) R is closed under complementation.
 - (b) RE is closed under complementation.
 - (c) RE is closed under intersection.
 - (d) co RE is closed under intersection.
 - (e) RE is closed under Kleene star.
- 2. A function $f: \Sigma^* \to \Gamma^*$ is computable if there exists a TM that halts with f(x) on its tape, when given x as input. For a function $f: \Sigma^* \to \Gamma^*$ define the language $L_f = \{(x, f(x)) | x \in \Sigma^*\}$.

Show that $L_f \in RE \iff f$ is computable

- 3. Are the following languages decidable? Prove your answers. Don't use Rice Thm.
 - (a) $\{\langle M \rangle | L(M) = \phi \}$
 - (b) $\{\langle M_1, M_2 \rangle | |L(M_1)| \le |L(M_2)| \}$
 - (c) $\{\langle M \rangle | \text{ there exists an input that } M \text{ accepts in less then } 100 \text{ steps} \}$
- 4. Let $L = \{\langle M \rangle | L(M) \text{ is Context Free} \}$. Show that $L \notin RE \cup CoRE$
- 5. Prove or disprove:
 - (a) $EMPTY_{DFA} \leq_m ALL_{DFA}$.
 - (b) $L(0^*1^*) \leq_m A_{TM}$.
 - (c) if $L \in RE$, then $L \leq_m A_{TM}$.
 - (d) \leq_m is a transitive relation.
- 6. (a) Let L be any infinite language in RE. Prove that there exists an infinite subset $L' \subseteq L$ such that $L' \in R$.
 - (b) (* Bonus!) Show that for an infinite language L in general (not necesarily in RE) the claim in (a) is not true.