Computational Models - Lecture 3

- Non Regular Languages: Two Approaches
 - (1) The Pumping Lemma
 - (2) Myhill-Nerode Theorem (not in Sipser’s book)
- Closure properties
- Algorithmic questions for NFAs

- Sipser’s book, 1.4, 2.1, 2.2
- Hopcroft and Ullman, 3.4
Proved Last Time

Thm.: A language, L, is described by a regular expression, R, if and only if L is regular.

\implies construct an NFA accepting R.

\iff Given a regular language, L, construct an equivalent regular expression

We have made a lot of progress understanding what finite automata can do. But what can’t they do?
Negative Results

Is there a DFA that accepts

- \(B = \{0^n1^n | n \geq 0\} \)
- \(C = \{w | w \text{ has an equal number of 0's and 1's}\} \)
- \(D = \{w | w \text{ has an equal number of occurrences of 01 and 10 substrings}\} \)

Consider \(B \):

- DFA must “remember” how many 0’s it has seen
- impossible with finite state.

The others are exactly the same...

Question: Is this a proof?

Answer: No, \(D \) is regular!???
Pumping Lemma
Pumping Lemma

We will show that all regular languages have a special property.

- Suppose \(L \) is regular.
- If a string in \(L \) is longer than a certain critical length \(\ell \) (the pumping length),
- then it can be “pumped” to a longer string by repeating an internal substring any number of times.
- The longer string must be in \(L \) too.
- This is a powerful technique for showing that a language is not regular.
Pumping Lemma

Theorem: If L is a regular language, then there is an $\ell > 0$ (the pumping length), where if s is any string in L of length $|s| \geq \ell$, then s may be divided into three pieces $s = xyz$ such that

- for every $i \geq 0$, $xy^iz \in L$,
- $|y| > 0$, and
- $|xy| \leq \ell$.

Remarks: Without the second condition, the theorem would be trivial.
The third condition is technical and sometimes useful.
Pumping Lemma – Proof

Let \(M = (Q, \Sigma, \delta, q_1, F) \) be a DFA that accepts \(L \).

Let \(\ell \) be \(|Q|\), the number of states of \(M \).

If \(s \in L \) has length at least \(\ell \), consider the sequence of states \(M \) goes through as it reads \(s \):

\[
\begin{align*}
&s_1 \quad s_2 \quad s_3 \quad s_4 \quad s_5 \quad s_6 \quad \ldots \quad s_n \\
&\uparrow \quad \uparrow \\
&q_1 \quad q_{20} \quad q_9 \quad q_{17} \quad q_{12} \quad q_{13} \quad q_9 \quad q_2 \quad q_5 \in F
\end{align*}
\]

Since the sequence of states is of length \(|s| + 1 > \ell\), and there are only \(\ell \) different states in \(Q \), at least one state is repeated (by the pigeonhole principle).
Write down $s = xyz$

By inspection, M accepts xy^kz for every $k \geq 0$.

$|y| > 0$ because the state (q_9 in figure) is repeated.

To ensure that $|xy| \leq \ell$, pick first state repetition, which must occur no later than $\ell + 1$ states in sequence.
Corollary: The language $B = \{0^n1^n | n > 0\}$ is not regular.

Proof: By contradiction. Suppose B is regular, accepted by DFA M. Let 2ℓ be the pumping length.

- Consider the string $s = 0^\ell 1^\ell$.
- By pumping lemma $s = xyz$, where $xy^kz \in B$ for every $k \geq 0$.
- If y is all 0, then xy^kz has too many 0’s, for $k \geq 2$.
- If y is all 1, then xy^kz has too many 1’s, for $k \geq 2$.
- If y is mixed, then xy^kz is not of right form.

♣
Using the Pumping Lemma

How to prove that a language is not regular

- Select a language L
- An adversary sets the parameter ℓ.
- Select a word $s \in L$.
- The word s would (usually) depend on ℓ.
- The adversary selects a partition $s = xyz$, such that $|y| \geq 1$ and $|xy| \leq \ell$.
- Show an index k, such that $xy^kz \notin L$.
- Need to prove for any parameter ℓ and any partition xyz.
Application # 2

Corollary: The language
\[C = \{ w \mid w \text{ has an equal number of 0's and 1's} \} \]
is not regular.

Proof: By contradiction. Suppose \(C \) is regular, accepted by DFA \(M \). Let \(\ell \) be the pumping length.

- Consider the string \(s = 0^{\ell}1^{\ell} \).
- By pumping lemma \(s = xyz \), where \(xy^kz \in C \) for every \(k \geq 0 \).
- Since \(|xy| \leq \ell \) then \(y \) is all 0, and \(xy^kz \) has too many 0’s.

What about \(D = \{ w \mid w \text{ has an equal number of occurrences of 01 and 10 substrings} \} \)?
Application # 3

Corollary: The language $E = \{0^i1^j | i > j\}$ is not regular.

Proof: By contradiction. Suppose E is regular, accepted by DFA M. Let ℓ be its pumping length.

- Consider the string $s = 0^\ell 1^{\ell-1}$.
- By pumping lemma $s = xyz$, where $xy^kz \in E$ for every $k \geq 0$, $|y| > 0$ and $|xy| \leq \ell$
- But for $k = 0$ we have $xz \notin E$, contradiction.
Corollary: The language $Primes \subset \{1\}^*$, which contains all strings whose length is a prime number, is not regular.

Proof: By contradiction. Suppose $Primes$ is regular, accepted by DFA M. Let ℓ be the pumping length.

- Let $s = 1^p \in Primes$, where $p \geq \ell$ is a prime.
- By pumping lemma $s = xyz$, where $xyz \in Primes$ for every k.
- For $k = p + 1$ we have $xy^kz = 1^{p+mp}$, where $|y| = m$.
- since $p(m + 1)$ is not prime, we have a contradiction. ♣
Another Example

Consider the language

\[L = \{a^i b^n c^n | n \geq 0, i \geq 1\} \cup \{b^n c^m | n, m \geq 0\}, \]

For any word \(s \in L \) we can apply the pumping lemma:

- If \(s = a^i b^n c^n \), then set \(x = \epsilon \) and \(y = a \).
- If \(s = b^n c^m \), then set \(x = \epsilon \) and \(y = b \).
- Is \(L \) regular?!
- How can we prove it?!
Characterization of Regular Languages
Let $L \subseteq \Sigma^*$ be a language.

Define an equivalence relation \sim_L on pairs of strings:

Let $x, y \in \Sigma^*$. We say that $x \sim_L y$ if for every string $z \in \Sigma^*$, $xz \in L$ if and only if $yz \in L$.

It is easy to see that \sim_L is indeed an equivalence relation (reflexive, symmetric, transitive) on Σ^*.

In addition, if $x \sim_L y$ then for every string $z \in \Sigma^*$, $xz \sim_L yz$ as well (this is called right invariance).
The Equivalence Relation \sim_L cont.

Like every equivalence relation, \sim_L partitions Σ^* to (disjoint) equivalence classes. For every string x, let $[x] \subseteq \Sigma^*$ denote its equivalence class w.r.t. \sim_L (if $x \sim_L y$ then $[x] = [y]$ – equality of sets).

Question is, how many equivalence classes does \sim_L induce?

In particular, is the number of equivalence classes of \sim_L finite or infinite?

Well, it could be either finite or infinite. This depends on the language L.
Three Examples

- Let $L_1 \subset \{0, 1\}^*$ contain all strings where the number of 1s is divisible by 4. Then \sim_{L_1} has finitely many equivalence classes.

- Let $L_2 \subset \{0, 1\}^*$ contain all strings of the form 0^n1^n. Then \sim_{L_2} has infinitely many equivalence classes.

- Let $L_3 = \{a^ib^nc^n\mid n \geq 0, i \geq 1\} \cup \{b^nc^m\mid n, m \geq 0\}$. Then \sim_{L_3} has infinitely many equivalence classes.

(Proof on the board)
Myhill-Nerode Theorem

Theorem: Let $L \subseteq \Sigma^*$ be a language. Then

L is regular $\iff \sim_L$ has *finitely many* equivalence classes.

Three specific consequences:

- $L_1 \subseteq \{0, 1\}^*$ contains all strings where the number of 1s is divisible by 4. Then L_1 is regular.

- $L_2 \subseteq \{0, 1\}^*$ contains all strings of the form $0^n 1^n$. Then L_2 is not regular.

- Let $L_3 = \{a^i b^n c^m | n \geq 0, i \geq 1\} \cup \{b^n c^m | n, m \geq 0\}$. Then L_3 is not regular.
Suppose L is regular. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA accepting it. The relation \sim_M on pairs of strings is defined as follows: $x \sim_M y$ if $\delta(q_0, x) = \delta(q_0, y)$. Clearly, \sim_M is an equivalence relation.

Furthermore, if $x \sim_M y$, then $xz \sim_M yz$ for every $z \in \Sigma^*$. Therefore, $xz \in L$ if and only if $yz \in L$.

This means that $x \sim_M y \implies x \sim_L y$ (i.e., \sim_M is a refinement of \sim_L).
The equivalence relation \sim_M has finitely many equivalence classes (at most the number of states in M).

We saw that $x \sim_M y \implies x \sim_L y$, so the number of equivalence classes of \sim_L is less or equal than the number of equivalence classes of \sim_M.

Therefore, \sim_L has finitely many equivalence classes. ♠
Myhill-Nerode Theorem: Proof cont.

Suppose \sim_L has \textbf{finitely many} equivalence classes. We’ll construct a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that accepts L.

- Let $x_1, \ldots, x_n \in \Sigma^*$ be representatives for the finitely many equivalence classes of \sim_L.
- $Q = \{[x_1], \ldots, [x_n]\}$.
- $\delta([x_i], a) = [x_ia]$ for all $a \in \Sigma$.
- $q_0 = [\varepsilon]$.
- $F = \{[x_i]: x_i \in L\}$.
Myhill-Nerode Theorem: Proof cont.

- $\delta([\varepsilon], x) = [x]$

proof: Assume $\delta([\varepsilon], x) = [x] = [x_i]$. By right invariance $\delta([\varepsilon], xa) = \delta([x_i], a) = [x_i a] = [xa]$

- Therefore, M accepts x iff $x \in L$

- So L is accepted by DFA, hence L is regular.
Example

Construct DFA (via the above method) for $L_1 \subset \{0, 1\}^*$ contains all strings where the number of 1s is divisible by 5.
Applications of the Proof

Let L be a regular language and let M be a DFA accepting it.

- The number of equivalence classes of \sim_L lowerbounds the number of equivalence classes of \sim_M, which equals the number of states in M.

- The equivalence relation \sim_M is a refinement of \sim_L (each equivalence class of \sim_L correspond to a union of states).

- There is an automata whose number of states equals the number of equivalence classes of \sim_L.
Minimizing Automata

Input: An automata M
Output: An automata M', such that $L(M) = L(M')$ and M' has a minimal number of states.

- Let $S_1 = F$ and $S_2 = Q - F$. Set $S = \{S_1, S_2\}$.
- While exists equivalent class $S_i \in S$, $q_1, q_2 \in S_i$ and $\sigma \in \Sigma$ such that,
 - $\delta(q_1, \sigma) \in S_{j_1}$ and $\delta(q_2, \sigma) \in S_{j_2}$, $j_1 \neq j_2$, then
 - let $S_{i,1} = \{q \in S_i : \delta(q, \sigma) \in S_{j_1}\}$, $j_1 \neq i$.
- $S = S - S_i \cup S_{i,1} \cup (S_i - S_{i,1})$
Minimizing Automata

- **Output** \(M = (Q', \delta', q'_0, F') \): where
 - \(Q' = S \),
 - \(q'_0 = S_0 \in S \text{ such that } q_0 \in S_0 \),
 - \(F' = \{S_1, \ldots, S_k\} \subset S \text{, such that } S_i \subset F \).
 - \(\delta'(S_i, \sigma) = S_j \text{ if for } q \in S_i \text{ then } \delta(q, \sigma) \in S_j \).
- **Claim:** The algorithm terminates, and outputs a (in fact, the) minimal automata.
Example
Closure Properties of Regular Languages
Simple Closure Properties

- Regular languages are closed under complement.
- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA that accepts L.
- Then $M' = (Q, \Sigma, \delta, q_0, Q - F)$ is a DFA that accepts $\bar{L} = \Sigma^* \setminus L$.

- NFA ?!

- Regular languages are closed under intersection.
- $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$.
- Proof with automata ?!
Division

\[L_1/L_2 = \{ x \mid \exists y \in L_2, xy \in L_1 \} \]

Examples:

- \(L_1 = (01 + 1)^* \) and \(L_2 = 00 \), \(L_1/L_2 = ? \)
- \(L_1/L_2 = \emptyset \).
- \(L_3 = a^*b^*c^* \) and \(L_4 = b \), \(L_3/L_4 = ? \).
- \(L_3/L_4 = a^*b^* \).
Theorem: Regular languages are closed under division with any language.

Proof:

1. L_1 is a regular language, so it has a DFA $M = (Q, \Sigma, \delta, q_0, F)$.
2. L_2 is an arbitrary language.
3. For L_1/L_2 we build $M' = (Q, \Sigma, \delta, q_0, F')$.
4. $F' = \{q | \exists y \in L_2, \delta(q, y) \in F\}$.
5. F' is well defined, but might be hard to compute – “non constructive proof".
Assignments

An assignment substitutes each letter with a language. Example: $f(0) = \{b\}$, $f(1) = \{a, bb\}$

$L = \{010, 10\} \implies f(L) = \{bab, bbbb, ab, bbb\}$

Theorem: Regular languages are closed under regular assignment (i.e., assignments to regular languages).

Proof: Let f be a regular assignment over Σ. Let $\mathcal{R}(\Sigma)$ denote all RE’s over Σ, and $R(L)$ be an arbitrary RE for L

- Define $g: \mathcal{R}(\Sigma) \mapsto \mathcal{R}$ as
 - $g(r_1 \cup r_2) = g(r_1) \cup g(r_2)$.
 - $g(r_1r_2) = g(r_1)g(r_2)$.
 - $g((r_1)^*) = g(r_1)^*$.
 - $g(a) = R(f(a))$, for $a \in \Sigma$

- **Claim:** $g(R) \in \mathcal{R}$ and $L(g(R)) = f(L(R))$, $\forall R \in \mathcal{R}(\Sigma)$
Homomorphism

- **Homomorphism**: an assignment that replaces each letter with a word

 - **Example**: $h(1) = aba$, $h(0) = aa$
 $h(010) = aa aba aa$
 $L_1 = (01)^*, \ h(L_1) = (aaaba)^*$.

- **Inverse homomorphism**: $h^{-1}(w) = \{x | h(x) = w\}$,
 $h^{-1}(L) = \{x | h(x) \in L\}$

 - **Example**: $L_2 = (ab + ba)^*a$, $h^{-1}(L_2) = \{1\}$.

- **Claim**: $h(h^{-1}(L)) \subseteq L \subseteq h^{-1}(h(L))$.

Slides modified Yishay Mansour on modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Homomorphism cont.

Theorem: Regular languages are closed under homomorphism and inverse homomorphism.

Proof:

- **Homomorphism**: special case of assignment.

- **Inverse Homomorphism**: Let $M = (Q, \Sigma, \delta, q_0, F)$ the automata for L, and $h : \Delta \to \Sigma^*$.

- **Proof idea**: for each letter $a \in \Delta$ we advance in M using $h(a)$.

Formally, we define $M' = (Q, \Delta, \delta', q_0, F)$, where $\delta'(q, a) = \delta(q, h(a))$.

Hence, $\delta'(q, w) = \delta(q, h(w))$

$w \in L(M') \iff h(w) \in L(M)$
Using Homomorphism

- We know that $L_1 = \{0^n1^n | n \geq 1\}$ is not regular.
- Show that $L_2 = \{a^nba^n | n \geq 1\}$ is not regular.
- We will prove using homomorphism and inverse homomorphism.

$h_1(a) = a$, $h_1(b) = b$, $h_1(c) = a$.

$h_2(a) = 0$, $h_2(b) = \epsilon$, $h_2(c) = 1$.

$h_2(h_1^{-1}(L_2) \cap a^*b^*c^*) = L_1$

$h_1^{-1}(L_2) = (a \cup c)^kb(a \cup c)^k$

$h_1^{-1}(L_2) \cap a^*bc^* = \{a^nb^nc | n \geq 1\}$

$h_2(h_1^{-1}(L_2) \cap a^*bc^*) = \{0^n1^n | n \geq 1\}$
Algorithmic Questions for NFAs
Algorithmic Questions for NFAs

Q.: Given an NFA, N, and a string w, is $w \in L(N)$?

Answer: Construct the DFA equivalent to N and run it on w.

Q.: Is $L(N) = \emptyset$?

Answer: This is a reachability question in graphs: Is there a path in the states’ graph of N from the start state to some accepting state. There are simple, efficient algorithms for this task.
More Questions

Q.: Is $L(N) = \Sigma^*$?

Answer: Check if $\overline{L(N)} = \emptyset$.

Q.: Given N_1 and N_2, is $L(N_1) \subseteq L(N_2)$?

Answer: Check if $\overline{L(N_2)} \cap \overline{L(N_1)} = \emptyset$.

Q.: Given N_1 and N_2, is $L(N_1) = L(N_2)$?

Answer: Check if $L(N_1) \subseteq L(N_2)$ and $L(N_2) \subseteq L(N_1)$.

In the future, we will see that for stronger models of computations, many of these problems cannot be solved by any algorithm.
Summary – Regular Languages
Summary - Regular Languages

So far we saw

- finite automata,
- regular languages,
- regular expressions,
- Myhill-Nerode theorem and pumping lemma for regular languages.

Next class we introduce stronger machines and languages with more expressive power:

- pushdown automata,
- context-free languages,
- context-free grammars