
Administrative Notes

MidTerm Exam: Tentative Friday May 4th.

Homework assignment 1 was published last week.

It is unlikely you’ll be able to solve it on your own if the
first time you think about is the night before the
deadline.

While we can hardly detect dependencies in
preparation of the homework (still, this sometimes
happens), we actively enforce mutual independence in
the midterm and final exams.
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Computational Models - Lecture 2

Non-Deterministic Finite Automata (NFA)

Closure of Regular Languages Under
⋃

, ◦, ∗

Regular expressions

Equivalence with finite automata

Sipser’s book, 1.1-1.3
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DFA Formal Definition (reminder)

A deterministic finite automaton (DFA) is a 5-tuple
(Q,Σ, δ, q0, F ), where

Q is a finite set called the states,

Σ is a finite set called the alphabet,

δ : Q× Σ → Q is the transition function,

q0 ∈ Q is the start state, and

F ⊆ Q is the set of accept states.
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Languages and DFA (reminder)

Definition: Let L ( L ⊆ Σ∗ ) be the set of strings that M
accepts. L(M), the language of a DFA M , is defined as
L(M) = L.

Note that

M may accept many strings, but

M accepts only one language.

A language is called regular if some deterministic finite
automaton accepts it.
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The Regular Operations (reminder)

Let A and B be languages.

The union operation:

A∪B = {x|x ∈ A or x ∈ B}

The concatenation operation:

A◦B = {xy|x ∈ A and y ∈ B}

The star operation:

A∗ = {x1x2 . . . xk|k ≥ 0 and each xi ∈ A}
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Claim: Closure Under Union (reminder)

If A1 and A2 are regular languages, so is A1 ∪ A2.

Approach to Proof:

some M1 accepts A1

some M2 accepts A2

construct M that accepts A1 ∪ A2.

in our construction, states of M were Cartesian product
of M1 and M2 states.
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What About Concatenation?

Thm: If L1, L2 are regular languages, so is L1 ◦ L2.

Example: L1= {good,bad} and L2 = {boy,girl}.

L1 ◦ L2 = {goodboy,goodgirl,badboy,badgirl}

This is much harder to prove.

Idea: Simulate M1 for a while, then switch to M2.

Problem: But when do you switch?

Seems hard to do with DFAs.
This leads us into non-determinism.
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Non-Deterministic Finite Automata

q
4q1 q

2 q3
0

0,1 0,1

10,ε

an NFA may have more than one transition labeled with
the same symbol,

an NFA may have no transitions labeled with a certain
symbol, and

an NFA may have transitions labeled with ε, the symbol
of the empty string.

Comment: Every DFA is also a non-deterministic finite
automata (NFA).
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Non-Deterministic Computation

q
4q1 q

2 q3
0

0,1 0,1

10,ε

What happens when more than one transition is possible?

the machine “splits” into multiple copies

each branch follows one possibility

together, branches follow all possibilities.

If the input doesn’t appear, that branch “dies”.

Automaton accepts if some branch accepts.

What does an ε transition do?
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Non-Deterministic Computation

q
4q1 q

2 q3
0

0,1 0,1

10,ε

What happens on string 1001?
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The String 1001

q
4q1 q

2 q3
0

0,1 0,1

10,ε

q
4

q1

q3

q1

q
2q1

q
2 q3q1 q3

q1 q
4

1

0

0

1

symbol
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Why Non-Determinism?

Theorem (to be proved soon): Deterministic and
non-deterministic finite automata accept exactly the same
set of languages.

Q.: So why do we need them?

A.: NFAs are often easier to design than equivalent DFAs.

Example: Design a finite automaton that accepts all strings
with a 1 in their third-to-the-last position?
NFA ?
DFA ?
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Solving with NFA

q
4q1 q

2 q3
1

0,1

0,10,1

“Guesses” which symbol is third from the last, and

checks that indeed it is a 1.

If guess is premature, that branch “dies”, and no harm
occurs.
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Solving with DFA

Have 8 states, encoding the last three letters.

A state for each string in {0, 1}3.

add transitions on modifying the suffix, give the new
letter.

Mark as accepting, the strings 1 ∗ ∗
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Solving with DFA

0
10
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NFA – Formal Definition

Transition function δ is going to be different.

Let P(Q) denote the powerset of Q.

Let Σε denote Σ ∪ {ε}.

A non-deterministic finite automaton is a 5-tuple
(Q,Σ, δ, q0, F ), where

Q is a finite set called the states,

Σ is a finite set called the alphabet,

δ : Q× Σε → P(Q) is the transition function,

q0 ∈ Q is the start state, and

F ⊆ Q is the set of accept states.
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Example

q
4q1 q

2 q3
0

0,1 0,1

10,ε

N1 = (Q,Σ, δ, q1, F )
where

Q = {q1, q2, q3, q4}, Σ = {0, 1},

δ is

0 1 ε

q1 {q1, q2} {q1} ∅

q2 {q3} ∅ {q3}

q3 ∅ {q4} ∅

q4 {q4} {q4} ∅

q1 is the start state, and F = {q4}.
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Formal Model of Computation

Let M = (Q,Σ, δ, q0, F ) be an NFA, and

y = y1y2 · · · ym be a string over Σε.

u be the string over Σ obtained from y by omitting all
occurances of ε.

Suppose there is a sequence of states (in Q),
r0, . . . , rn, such that

r0 = q0

ri+1∈δ(ri, yi+1), 0 ≤ i < n

rn ∈ F

Then we say that M accepts u.
Does M accept the empty string?
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Equivalence of NFA’s and DFA’s

Given an NFA, N , we construct a DFA, M , that accepts
the same language.

To begin with, we make things easier by ignoring ε
transitions.

Make DFA simulate all possible NFA states.

As consequence of the construction, if the NFA has k

states, the DFA has 2k states (an exponential blow up).
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Equivalence of NFA’s and DFA’s

Let N = (Q,Σ, δ, q0, F ) be the NFA accepting A.

Construct a DFA M = (Q′,Σ, δ′, q′0, F
′).

Q′ = P(Q).

For R ∈ Q′ and a ∈ Σ, let

δ′(R, a) =
⋃

r∈R

δ(r, a) = {q ∈ Q|q ∈ δ(r, a) for some r ∈ R}

q′0 = {q0}

F ′ = {R ∈ Q′|R contains an accept state of N}

Notice: F ′ is a set whose elements are subsets of Q, so
(as expected) F ′ is a subset of P(Q).
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Equivalence of NFA’s and DFA’s - proof

Extend the transition function to work on words:
δ′(q, w1 · · ·wn) = δ′(δ′(q, w1 · · ·wn−1), wn),
δ(q, w1 · · ·wn) =

⋃

q∈δ(q,w1···wn−1)
δ(q, wn), (δ′(q, ǫ) = q)

Define an equivalence between subset of states R ⊂ Q
in the NFA and the states q(R) ∈ Q′ in DFA

How do we proceed with a proof ?!
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Equivalence of NFA’s and DFA’s - proof

Inductive Claim: For any word y = y1y2 · · · ym ∈ Σ∗ of
length m, δ(q0, y) is equivalent to δ′(q0, y).

Proof by induction on m.

Base of the induction: δ(q0, ǫ) = q0 and δ′({q0}, ǫ) = {q0}.

Inductive step. Fix y = y1 . . . ym and let
Rm−1 = δ′(q0, y1 . . . ym−1)

δ′(q0, y) = δ′(Rm−1, ym) =
⋃

r∈Rm−1

δ(r, ym)

=
⋃

r∈δ(q0,y1...ym−1)

δ(r, ym) = δ(q0, y)

Example.

Slides modified Yishay Mansour on modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p. 22



Example: NFA ⇒ DFA

Non-Deterministic Automata:
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Example: NFA ⇒ DFA

Deterministic Automata - set of states:
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Example: NFA ⇒ DFA

Deterministic Automata - transitions from {q0}:
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Example: NFA ⇒ DFA

Deterministic Automata:
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Dealing with ε-Transitions

Given NFA with ε-transitions, we create an equivalent NFA
with no ε-transitions.
For any state R of M , define E(R) to be the collection of
states reachable from R by ε transitions only.

E(R) = {q ∈ Q|q can be reached from some r ∈ R
by 0 or more ε transitions}

Define transition function:

δ′(R, a) = {q ∈ Q| q ∈ E(δ(r, a)) for some r ∈ R}

Change start state to

q′0 = E({q0}) ♣
Example.
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Example: Removing ε-Transitions

Non-Deterministic Automata with ε-tansitions
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Example: Removing ε-Transitions

Non-Deterministic Automata without ε-tansitions

a

c

{q0,q1,q2,q3} q3

a

{q1,q2,q3}
b

b

{q2,q3}
c

c

c

b

a,ba

Ø

a,b,c
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Regular Languages, Revisited

By definition, a language is regular if it is accepted by some
DFA.

Corollary: A language is regular if and only if it is accepted
by some NFA.

This is an alternative way of characterizing regular
languages.
We will now use the equivalence to show that regular
languages are closed under the regular operations (union,
concatenation, star).
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Closure Under Union (alternative proof)

N1

N2
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Regular Languages Closed Under Union

N1

N2

ε

ε
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Regular Languages Closed Under Union

Suppose

N1 = (Q1,Σ, δ1, q1, F1) accept L1, and

N2 = (Q2,Σ, δ2, q2, F2) accept L2.

Define N = (Q,Σ, δ, q0, F ):

Q = {q0} ∪Q1 ∪Q2 (we assume Q1 ∩Q2 = ∅)

Σ is the same, q0 is the start state

F = F1 ∪ F2

δ′(q, a) =



























δ1(q, a) q ∈ Q1

δ2(q, a) q ∈ Q2

{q1, q2} q = q0 and a = ε

∅ q = q0 and a 6= ε
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Regular Languages Closed UnderConcatenation

N2

N1
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Regular LanguagesClosed Under Concatenation

N2N1
ε

ε

Remark: Final states are exactly those of N2.
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Regular LanguagesClosed Under Concatenation

Suppose

N1 = (Q1,Σ, δ1, q1, F1) accept L1, and

N2 = (Q2,Σ, δ2, q2, F2) accept L2.

Define N = (Q,Σ, δ, q1, F2):

Q = Q1 ∪Q2

q1 is the start state of N

F2 is the set of accept states of N

δ′(q, a) =



























δ1(q, a) q ∈ Q1 and q /∈ F1

δ1(q, a) q ∈ Q1 and a 6= ε

δ1(q, a) ∪ {q2} q ∈ F1 and a = ε

δ2(q, a) q ∈ Q2
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Regular Languages Closed Under Star
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Regular Languages Closed Under Star
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Regular Languages Closed Under Star

Suppose N1 = (Q1,Σ, δ1, q1, F1) accepts L1.
Define N = (Q,Σ, δ, q0, F ):

Q = {q0} ∪Q1

q0 is the new start state.

F = {q0} ∪ F1

δ′(q, a) =



























δ1(q, a) q ∈ Q1 and q /∈ F1

δ1(q, a) q ∈ F1 and a 6= ε

δ1(q, ε) ∪ {q0} q ∈ F1 and a = ε

{q1} q = q0 and a = ε

∅ q = q0 and a 6= ε

Example
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Summary

Regular languages are closed under
union
concatenation
star

Non-deterministic finite automata
are equivalent to deterministic finite automata
but much easier to use in some proofs and
constructions.
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Regular Expressions

A notation for building up languages by describing them as
expressions, e.g. (0 ∪ 1)0∗.

0 and 1 are shorthand for {0} and {1}

so (0 ∪ 1) = {0, 1}.

0∗ is shorthand for {0}∗.

concatenation, like multiplication, is implicit, so 0∗10∗ is
shorthand for the set of all strings over Σ = {0, 1} having
exactly a single 1.

Q.: What does (0 ∪ 1)0∗ stand for?
Remark: Regular expressions are often used in text editors
or shell scripts.
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More Examples

Let Σ be an alphabet.

The regular expression Σ is the language of
one-symbol strings.

Σ∗ is all strings.

Σ∗1 all strings ending in 1.

0Σ∗ ∪ Σ∗1 strings starting with 0 or ending in 1.

Just like in arithmetic, operations have precedence:

star first

concatenation next

union last

parentheses used to change default order
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Regular Expressions – Formal Definition

Syntax: R is a regular expression over Σ, if R is of form

a for some a ∈ Σ

ε

∅

(R1 ∪ R2) for regular expressions R1 and R2

(R1 ◦ R2) for regular expressions R1 and R2

(R∗

1) for regular expression R1
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Regular Expressions – Formal Definition

Let L(R) be the language denoted by regular expression R.

R L(R)

a {a}

ε {ε}

∅ ∅

(R1 ∪R2) L(R1) ∪ L(R2)

(R1 ◦R2) L(R1) ◦ L(R2)

(R1)
∗ L(R1)

∗

Q.: What’s the difference between ∅ and ε?
Q.: Isn’t this definition circular?
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Remarkable Fact

Thm.: A language, L, is described by a regular
expression, R, if and only if L is regular.

=⇒ construct an NFA accepting R.

⇐= Given a regular language, L, construct an
equivalent regular expression.
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Given R, Build NFA Accepting It (=⇒)

1. R = a , for some a ∈ Σ

a

2. R = ε

3. R = ∅
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Given R, Build NFA Accepting It (=⇒)

N1

N2

ε

ε
N2N1

ε

ε

R = (R1 ∪ R2) R = (R1 ◦R2)
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Example

a

a

b

b

ab ε
ba

ab ε

a

ε

ε
ba U a
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Regular Expression from an NFA (⇐=)

We now define generalized non-deterministic finite
automata (GNFA).
An NFA:

Each transition labeled with a symbol or ε,

reads zero or one symbols,

takes matching transition, if any.

A GNFA:

Each transition labeled with a regular expression,

reads zero or more symbols,

takes transition whose regular expression matches
string, if any.

GNFAs are natural generalization of NFAs.
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GNFA – Formal Definition

A generalized deterministic finite automaton (GNFA) is
(Q,Σ, δ, qs, qa), where

Q is a finite set of states,

Σ is the alphabet,

δ : (Q− {qa})× (Q− {qs}) → R is the transition function.

qs ∈ Q is the start state, and

qa ∈ Q is the unique accept state.
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GNFA – Model of Computation

A GNFA accepts a string w ∈ Σ∗ if there exists a parsing of
w, w = w1w2 · · ·wk, where each wi ∈ Σ∗, and there exists a
sequence of states q0, . . . , qk such that

q0 = qs, the start state,

qk = qa, the accept state, and

for each i, wi ∈ L(Ri), where Ri = δ(qi−1, qi).

(namely wi is an element of the language described by
the regular expression Ri.)
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The Transformation: DFA → Regular Expression

Strategy – sequence of equivalent transformations

given a k-state DFA

transform into (k + 2)-state GNFA (how?)

while GNFA has more than 2 states, transform it into
equivalent GNFA with one fewer state

eventually reach 2-state GNFA (states are just start and
accept).

label on single transition is the desired regular
expression. ♠
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Converting Strategy (⇐=)

3-state
DFA

5-state
GNFA

4-state
GNFA

3-state
GNFA

2-state
GNFA

regular
expression
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Removing One State

We remove one state qr, and then repair the machine by
altering regular expression of other transitions.

qi jq

qr

R1 3R

4R

qi jq

2R

2R*R1 3R U 4R
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The StateReduce Algorithm

Given a k > 2-state GNFA G, convert it to an equivalent
GNFA G′.

Select any qr distinct from qs and qa.

Let Q′ = Q− {qr} .

For any qi ∈ Q′ − {qa} and qj ∈ Q′ − {qs}, let

R1 = δ(qi, qr), R2 = δ(qr, qr),

R3 = δ(qr, qj), and R4 = δ(qi, qj).

Define δ′(qi, qj) = (R1)(R2)
∗(R3) ∪ (R4).

Return the resulting (k − 1)-state GNFA.
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The Convert Algorithm

We define the recursive procedure Convert(·):

Given GNFA G.

Let k be the number of states of G.

If k = 2, return the regular expression labeling the only
arrow of G.

Otherwise, return Convert(StateReduce(G)).
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Conversion - Example
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Conversion - Example
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Conversion - Example
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Conversion - Example
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Correctness Proof of Construction

Theorem: G and Convert(G) accept the same language.

Proof: By induction on number of states of G

Basis. k = 2: Immediate by the definition of GFNA.

Induction Step: Assume claim for (k − 1)-state GNFA,
where k > 2, prove for k-state GNFA.

Let G′ = StateReduce(G) (note that G′ has k − 1 states).
We prove that L(G) = L(G′) (i.e., G and G′ accept the same
language).
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G and G′ accept the same language

Two steps:

If G accepts the string w, then so does G′.

If G′ accepts the string w, then so does G.

Therefore, L(G) = L(G′).
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Step One

Claim: If G accepts w, then so does G′:

If G accepts w, then there exists a “path of states”
qs, q1, q2, . . . , qa traversed by G on w.

If qr does not appear on path, then G′ accepts w
because the the new regular expression on each edge
of G′ contains the old regular expression in the “union
part”.

If qr does appear, consider the regular expression
corresponding to . . . qi, qr, . . . , qr, qj . . . .
The new regular expression (Ri,r)(Rr,r)

∗(Rr,j) linking qi
and qj encompasses any such string.

In both cases, the claim holds.
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Step Two

Claim: If G′ accepts w, then so does G.

Proof: Each transition from qi to qj in G′ corresponds to a
transition in G, either directly or through qr. Thus if G′

accepts w, then so does G.
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Conclusion

We proved L(G) = L(G′).

Hence, G and (the regular expression) Convert(G)
accept the same language.

Thus, we proved the remarkable claim:
A language, L, is described by a regular expression, R,
if and only if L is regular. ♣
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