Each variable is represented by the following graph:

Each clause of ϕ is a single node.

Global structure of graph (missing edges)

I pairs of Center of each diamond has nodes, one for each clause.

If variable x_i appears in clause c_j , add this "detour"

If $\overline{x_i}$ appears in clause c_j , add this "detour"

After adding edges from "diamonds" to clause vertexes, G is complete.

Claim: If ϕ is satisfiable, then G has a hamiltonian path.

Strategy:

- ignore clause nodes for now
- traverse diamonds

If x_i is true in the assignment, then zig-zag.

If x_i is false in the assignment, then zag-zig.

Add clause nodes.

- Each c_j is assigned one true literal.
- For each clause, pick one.

If we select x_i in c_i , add "detour"

Add clause nodes.

- Each c_j is assigned one true literal.
- For each clause, pick one.

If we select $\overline{x_i}$ in c_i , add "detour"

This completes one direction of the reduction.

Claim: If G has a hamiltonian path from s to t, then ϕ has a satisfying assignment.

Definition: A **normal** hamiltonian path is one that traverses the diamonds in order.

- if x_i diamond zig-zags, assign true.
- ullet if x_i diamond zags-zig, assign false.
- each clause vertex appears once
- source of detour determines which literal is assigned true.

Claim: Every hamiltonian path in G is normal.

- only arrows to a_2 from a_1, a_3, c
- ullet paths from a_1 or c go elsewhere
- path from a_3 would leave no exit

Any hamiltonian path is normal, Q.E.D.