Each variable is represented by the following graph: Each clause of ϕ is a single node. Global structure of graph (missing edges) I pairs of Center of each diamond has nodes, one for each clause. If variable x_i appears in clause c_j , add this "detour" If $\overline{x_i}$ appears in clause c_j , add this "detour" After adding edges from "diamonds" to clause vertexes, G is complete. Claim: If ϕ is satisfiable, then G has a hamiltonian path. ### Strategy: - ignore clause nodes for now - traverse diamonds If x_i is true in the assignment, then zig-zag. If x_i is false in the assignment, then zag-zig. #### Add clause nodes. - Each c_j is assigned one true literal. - For each clause, pick one. If we select x_i in c_i , add "detour" #### Add clause nodes. - Each c_j is assigned one true literal. - For each clause, pick one. If we select $\overline{x_i}$ in c_i , add "detour" This completes one direction of the reduction. Claim: If G has a hamiltonian path from s to t, then ϕ has a satisfying assignment. **Definition:** A **normal** hamiltonian path is one that traverses the diamonds in order. - if x_i diamond zig-zags, assign true. - ullet if x_i diamond zags-zig, assign false. - each clause vertex appears once - source of detour determines which literal is assigned true. Claim: Every hamiltonian path in G is normal. - only arrows to a_2 from a_1, a_3, c - ullet paths from a_1 or c go elsewhere - path from a_3 would leave no exit Any hamiltonian path is normal, Q.E.D.