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Talk Outline

RE-Completeness

Reductions via computational histories (CFG)

Linear Bounded Automata

Unrestricted Grammars

Sipser’s book, Chapter 5, Sections 5.1, 5.3
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Mapping Reductions (Review)

A mapping reduction converts questions about membership in A to
membership in B.

Theorem 1
If A ≤m B and B is decidable, then A is decidable.

Corollary 2

If A ≤m B and A is undecidable, then B is undecidable.

In fact, this has been our principal tool for proving undecidability of
languages other than ATM
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Section 1

Rice’s Theorem
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Non Trivial Properties of RE Languages

A few examples

L is finite.

L is infinite.

L contains the empty string.

L contains no prime number.

L is co-finite.

. . .
All these are non-trivial properties of enumerable languages, since for
each of them there is L1, L2 ∈ RE such that L1 satisfies the property
but L2 does not.

Question 3
Are there trivial properties of RE languages?
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Rice’s Theorem

Theorem 4
Let ∅ 6= C ( RE and let LC = {〈M〉 : L(M) ∈ C}. Then LC is undecidable.

Proof’s idea: Reduction from HTM: Given M and w , we construct a TM
BM,w such that:

If M halts on w , then 〈BM,w 〉 ∈ LC .

If M does not halt on w , then 〈BM,w 〉 6∈ LC .

It will follow that f (〈M,w〉) := 〈BM,w 〉 is a mapping reduction from HTM

to LC =⇒ HTM ≤m LC =⇒ LC is undecidable.
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Proving Rice’s Theorem

We assume wlg. that ∅ 6∈ C (otherwise, look at C, also proper and
non-empty).
Fix L ∈ C and let ML be a TM accepting it (recall C ⊆ RE).
Given a pair 〈M,w〉 of TM and a string, define

Algorithm 5 ( BM,w )

On input y :
1 Emulate M(w).
2 Emulate ML(y):

Accept if ML accepts; Reject if ML rejects.

Let f (〈M,w〉) := 〈BM,w 〉, and let f (x) = ∅ if x is not of the form 〈M,w〉.

Claim 6
f is a mapping reduction from HTM to LC
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f is Computable

Claim 7
f is computable.

Proof: On a valid pair 〈M,w〉, the TM BM,w = f (〈M,w〉) is simply a
concatenation of two known TMs: the universal machine and ML. ♣
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〈M,w〉 ∈ HTM ⇐⇒ f (〈M,w〉) ∈ LC

Claim 8
〈M,w〉 ∈ HTM ⇐⇒ f (〈M,w〉) ∈ LC

Proof:
If 〈M,w〉 ∈ HTM, then BM,w gets to Step 2, and emulates ML(y).

Hence L(BM,w ) = L ∈ C.

Otherwise (i.e., 〈M,w〉 6∈ HTM), BM,w never gets to Step 2.
Hence L(BM,w ) = ∅ /∈ C.

Thus, 〈M,w〉 ∈ HTM iff 〈BM,w 〉 ∈ LC .

♣

We proved that HTM ≤m LC , thus LC is undecidable.
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Reflections

Rice’s theorem can be used to show undecidability of properties
like

I Does L(M) contain infinitely many primes
I Does L(M) contain an arithmetic progression of length 15
I Is L(M) empty

Decidability of properties related to the encoding itself cannot be
inferred from Rice.

I The question does 〈M〉 has an even number of states is decidable.
I The question does M reaches state q6 on the empty input string is

undecidable, but this does not follow from Rice’s theorem.

Rice does not say anything on membership in RE .

Rice’s Theorem is a powerful tool, but use it with care!
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Section 2

Controlled Executions
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Bounded Acceptance – CET is Decidable

Definition 9
CET := {〈M,w , k〉 : M accepts w within k steps}.

Theorem 10
CET is decidable.

Proof?
What about space?

Definition 11
CES := {〈M,w , k〉 : M accepts w using k cells}.

Theorem 12
CES is decidable.
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Bounded Acceptance – CET is Decidable, 2

Theorem 13
CES is decidable.

Proof: How to check that the computation will not terminate?

Three different proofs, involving TM configurations.
Let m = |Q| · |Γ|k · k be the number of configurations.

Wait until a configuration repeats.

Run for m + 1 steps.

Build an automata with states as configurations, and an edge if M
moves from one configuration to another. Check if there is a cycle
reachable from the start state.

♣
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Reductions via Controlled Executions

L∞ = {〈M〉 : L(M) is infinite}

By Rice Theorem: L∞ /∈ R.

We want to show that L∞ /∈ RE .

Proof’s idea:

Reduction from HTM.

We are after a reduction f (〈M,w〉) = 〈BM,w 〉 such that
I If M halts on w =⇒ L(BM,w ) is finite.
I If M does not halt on w =⇒ L(BM,w ) is infinite.

It will follow that x ∈ HTM ⇐⇒ f (x) ∈ L∞

Hence, HTM ≤m L∞.

Since HTM /∈ RE , this will imply L∞ /∈ RE .
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The TM BM,w

Definition 14 ( BM,w )

On input y
1 Emulate M(w) for |y | steps.
2 Accept, if M(w) did not halt in that many steps; Otherwise, Reject.

M(w) does not halt =⇒ BM,w accepts all y ’s =⇒ L(BM,w ) = Σ∗

=⇒ 〈BM,w 〉 ∈ L∞.

M(w) halts after k steps =⇒ BM,w accepts only y ’s of length
smaller than k =⇒ L(BM,w ) is finite =⇒ 〈BM,w 〉 /∈ L∞.

Hence, x ∈ HTM ⇐⇒ f (x) ∈ L∞ =⇒ HTM ≤m L∞ =⇒ L∞ /∈ RE
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Section 3

RE-Completeness
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RE-Completeness

Question 15
Is there a language L that is hardest in the class RE?

Answer: Well, you have to define what you mean by “hardest
language”. . .

Definition 16 ( RE-complete)

A language L0 ⊆ Σ∗ is called RE-complete, if the following holds

L0 ∈ RE (membership).

L ∈ RE for every L ≤m L0 (hardness).

The second item means that ∀L ∈ RE , there is a mapping
reduction fL from L to L0.
The reduction fL depends on L and will typically differ from one
language to another.

Question 17
Are there RE-complete languages?
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ATM is RE-Complete.

Theorem 18
ATM is RE-Complete.

Proof:

Clearly ATM ∈ RE .

Let L ∈ RE , and let ML be a TM accepting it.
Then fL(w) = 〈ML,w〉 is a mapping reduction from L to ATM

(why?).

♣
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Section 4

Computation Histories
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Reduction via Computation Histories

Important technique for proving undecidability. Examples

Basis for proof of undecidability in Hilbert’s tenth problem (where
"object" is integral root of polynomial).

Does a context free grammar generate Σ∗?

Does a linear bounded TM accept the empty language?
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Reminder: Configurations

Configuration: 1011q70111, means:

state is q7

LHS of tape is 1011

RHS of tape is 0111

head is on RHS 0

(configuration) uaqibv yields (i.e., =⇒ ) uqjacv , if
δ(qi , b) = (qj , c, L)

uaqibv yields uacqjv if δ(qi , b) = (qj , c,R)

Special case (left end of tape): qibv yields qjcv if
δ(qi , b) = (qj , c, L).
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Computation Histories

Let M be a TM and w an input string.
An accepting computation is #C1#C2# . . .#C`#, where

1 C1 is the starting configuration of M on w ,
2 C` is an accepting configuration of M,
3 Each Ci yields Ci+1 by transition function of M.

A string is not an accepting computation history if it fails one or
more of these conditions.
A rejecting computation history for M on w is the same, except

I C` is a rejecting configuration of M.

Remark 19
Computation sequences are finite.

If M does not halt on w , neither accepting nor rejecting
computation history exist.

Notion is useful for both deterministic (one history) and
non-deterministic (many histories) TMs.
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Computation Histories and Emptiness of CFGs

SENTENCE

NOUN-PHRASE VERB

ARTICLE NOUN

a boy sees
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Emptiness of CFGs

We have seen an algorithm to check whether a CFG is empty.

Algorithm 20

On input 〈G〉 (where G is a CFG):
1 Mark all terminal symbols in G.
2 Repeat until no new variables become marked:
3 Mark any A where A→ U1U2 . . .Uk , and each Ui has already

been marked.
4 Accept, if start symbol marked; otherwise Reject.

So ECFG is decidable.

Question 21
What about the complementary question: does a CFG generate all
strings?
Namely, does AllCFG := {〈G〉 : G is a CFG and L(G) = Σ∗} ∈ R
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AllCFG is Undecidable

Theorem 22
AllCFG is undecidable.

Proof’s idea: Reduction from ATM to AllCFG:

1 Given 〈M,w〉, construct a coding of a CFG, 〈G〉, that generates all
strings that are not accepting computation histories for M on w

2 if M does not accept w , G generates all strings
3 if M does accept w , then G does not generate the accepting

computation history.
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The PDA

Instead of a CFG, we construct a PDA (recall equivalence) the
“guesses” which condition is violated, and verifies the guessed
violation.

Algorithm 23 ( D)

On input h = C1#C2 . . .#C`, check
1 Is there some Ci that is not a configuration of M (i.e., number of q

symbols 6= 1)?
2 Is C1 not the starting configuration of M on w?
3 Is C` not an accepting configuration of M?
4 ∃i ∈ [`] s.t. Ci 6=⇒ Ci+1 according to δ – the transition function of

M?

The last condition is the tricky one to check.
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Checking Ci 6=⇒ Ci+1

Algorithm 24 (Checking Ci 6=⇒ Ci+1)

1 Push Ci onto the stack till #.
2 Scan Ci+1 and pop matching symbols of Ci

Check if Ci and Ci+1 match everywhere, except around the head
position where difference dictated by transition function for M.

Problem
When Ci is popped from stack, it is in reverse order.

But we only trying to identify (ignoring the local changes around head
position) the language x#y , with x 6= y .

This can be done a PDA (see Lecture 5), but here we give a simpler
solution.
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Checking Ci 6=⇒ Ci+1, take 2

So far, we used a “straight” notion of accepting computation
histories

# −→
︸ ︷︷ ︸

C1

# −→
︸ ︷︷ ︸

C2

# −→
︸ ︷︷ ︸

C3

# −→
︸ ︷︷ ︸

C4

# · · · #
︸ ︷︷ ︸

C`

#

But why not employ an alternative notion of accepting computation
history, one that will make the life of our PDA much easier?

A solution: write the accepting computation history so that every
other configuration is in reverse order.

# −→
︸ ︷︷ ︸

C1

# ←−
︸ ︷︷ ︸

C2

# −→
︸ ︷︷ ︸

C3

# ←−
︸ ︷︷ ︸

C4

# · · · #
︸ ︷︷ ︸

C`

#

This resolves the difficulty in the proof.
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Putting It Together

Given 〈M,w〉, we constructed (algorithmically) a PDA, D, that
rejects the string z if and only if z equals an accepting
computation history of M on w , written in the "alternating format".

Therefore L(D) is either Σ∗ or Σ∗ \ {z}.

This D has an equivalent (and efficiently described) CFG, G,
namely L(D) = L(G). So L(G) is either Σ∗ or Σ∗ \ {z}. The
mapping 〈M,w〉 7→ 〈G〉 is thus a reduction from ATM to AllCFG.

(Since ATM /∈ R) =⇒ AllCFG /∈ R.

(Since R = R) =⇒ AllCFG /∈ R. ♠
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Section 5

Linear Bounded Automata

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 9 May 21/23, 2012 30 / 49



Linear Bounded Automata – LBA

A restricted form of TM.
Cannot move off portion of tape containing input (have no such
instruction, for example, suppose $ signifies the end of input.)
Size of input determines size of memory

1 01
0

1 01
0

turing machine linear bounded automaton

Question 25
Why is it called “linear"?

Answer: Using a tape alphabet larger than the input alphabet
increases memory by a constant factor.
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LBA s are Powerful!

The deciders we seen for the following languages are all LBAs.
I ADFA (does a DFA accept a string?)
I ACFG (is string in a CFG?)
I EMPTYDFA (is a DFA trivial?)
I ECFG (is a CFL empty?)

Every CFL can be decided by an LBA.

Not too easy to find a natural, decidable language that cannot be
decided by an LBA.
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Acceptance for LBAs – ALBA

ALBA = {〈M,w〉 : M is an LBA that accepts w}

Question 26
Is ALBA decidable?

Theorem 27
ALBA is decidable.

Proof’s idea:

Emulate M(w), where if M tries to “exit” the input space, halt and
reject.

But what if M loops?
M loops iff it repeats a configuration (Why?)

By pigeon hole, if our LBA M runs long enough, it must repeat a
configuration.
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LBA’s have Bounded Number of Configuration

Lemma 28
Let M be a LBA with q states, g symbols in tape alphabet. Then on
input of size n, M has at most qngn distinct configurations.

Proof: A configuration involves:

control state (q possibilities)

head position (n possibilities)

tape contents (gn possibilities)

♣
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Decider for ALBA

Algorithm 29

On input 〈M,w〉, where M is an LBA and w ∈ Σ∗,
1 Emulate M(w) while maintaining a step counter
2 Counter incremented by 1 per each simulated step (of M).
3 Keep emulating M for qngn steps, or until it halts (whichever

comes first)
4 Accept if M has halted and accepted; otherwise, Reject
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Wholeness for LBAs – AllLBA

AllLBA = {〈M〉 : M is an LBA and L(M) = Σ∗}

Question 30
Is AllLBA decidable?

Theorem 31
AllLBA is undecidable.

Proof’s idea: Same as in AllCFG: the computation we did using a PDA
can be done deterministically by an LBA.
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Emptiness for LBAs – AllLBA

EMPTYLBA = {〈M〉 : M is an LBA and L(M) = ∅}

Question 32
Is EMPTYLBA decidable?

Theorem 33
EMPTYLBA is undecidable.

Proof’s idea:

Given a TM M and input w , we construct an LBA BM,w such that if
〈M,w〉 ∈ ATM, then L(BM,w ) contains the accepting computation
history for M on w

Hence, M accepts w iff L(BM,w ) 6= ∅.

=⇒ ATM≤mEMPTYLBA =⇒ EMPTYLBA /∈ R =⇒
EMPTYLBA /∈ R.
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The LBA BM,w

Algorithm 34 (The LBA, BM,w )

On input x

1 Split x according to the # delimiters into C1,C2, . . . ,C`.
2 Check that all the following conditions hold:

1 Each Ci is a configuration of M
2 C1 is the start configuration of M on w
3 C` is an accepting configuration
4 Every Ci+1 follows from Ci according to M

The only challenging task is to compute Step 4 in linear space

Algorithm 35 (Does Ci =⇒ Ci+1?)

1 Zig-zag between corresponding positions of Ci and Ci+1.
2 Use “dots” on tape to mark current position

This can be done inside space allocated by the input. Thus BM,w is
indeed a LBA.
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Putting It Together

The LBA, BM,w , accepts x iff x is an accepting computation history
of M on w .

Therefore L(BM,w ) is either empty or a singleton {x}.

=⇒ 〈M,w〉 ∈ ATM ⇐⇒ 〈BM,w 〉 ∈ EMPTYLBA.

The reduction 〈M,w〉 7→ BM,w is computable

=⇒ ATM≤mEMPTYLBA =⇒ EMPTYLBA /∈ R =⇒
EMPTYLBA /∈ R. ♠

BM,w is the mirror of the machine to that we used for proving
ATM ≤m AllLBA.

Question 36
Are EMPTYLBA,AllLBA ∈ RE?
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Section 6

Unrestricted Grammars
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Unrestricted Grammars

Unrestricted grammars (i.e., context dependant grammar) are similar
to context free ones, except left hand side of rules can be strings of
variables and terminal with at least one variable.

To non-deterministically generate a string according to a given
unrestricted grammar:

1 Start with the initial symbol
2 While the string contains at least one non-terminal:

1 Find (non deterministically) a substring that matches the LHS of
some rule

2 Replace that substring with the RHS of the rule
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Unrestricted Grammar for {anbncn}

Definition 37 (Unrestricted Grammar for {anbncn})

Generate the variable sequence L(ABC)n:
S → LT |ε;
T → ABCT |ε;

Sort the {A,B,C} and get LAkBkCk .
BA→ AB;
CB → BC;
CA→ AC;

Replace the variables by terminals.
LA→ a;
aA→ aa;
aB → ab;
bB → bb;
bC → bc;
cC → cc;
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The Class UG

UG = {L : ∃ unrestricted grammar G : L(G) = L}

I.e., the set of languages that can be described by an unrestricted
grammar

Theorem 38
UG = RE

We show that:

UG ⊆ RE

RE ⊆ UG
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Proving UG ⊆ RE

Given any unrestricted grammar G, we create a two-tape
non-deterministic TM M that accepts L(G).

Algorithm 39

Maintain input w on tape 1 and initialize tape 2 to the initial symbol S.

Do (until accept):

1 Move (non-deterministically) to some location on tape 2
2 Select (non-deterministically) a rule R and try to apply it to that

location.
3 Accept if tape 1 and tape 2 are identical.
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Proving RE ⊆ UG

Let L ∈ RE and let M be a deterministic Turing Machine that
accepts it. We create an unrestricted grammar G with L(G) = L

Idea: variables of G are the states Q
I Maintain w [c], where w is the input and c is the current

configuration.
I if c is an accepting configuration, replace [c] by ε.
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The Unrestricted Grammar for L(M)

Idea: maintain w [c], where w is the input and c is the current
configuration.

Definition 40 (Unrestricted Grammar G for L(M))

Generate the string w [q0w ]:
S → T [q0]
For all a ∈ Σ:
T → aTAa|ε; Aa[q0 → [q0Aa ; Aab → bAa ; Aa]→ a]

Simulate M(w):
δ(q, a) = (q′, b,R)⇒ qa→ bq′

δ(q, a) = (q′, b, L)⇒ cqa→ q′cb ; [qa→ [q′b ; q]→ q ]

Accepting – derive w from w [uqav ]:
qa → ELER

aEL → EL; [EL → ε
ERa→ ER; ER]→ ε
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Section 7

Primes, Yet Another Example
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Primes

Primes = {p ∈ N : p is a prime}

PrimesTM = {〈M〉 : M is a TM and L(M) = Primes}

Theorem 41
PrimesTM /∈ RE .

Proof’s idea: We define a computable function f with

〈M,w〉 ∈ ATM ⇐⇒ 〈M
′〉 ∈ PrimesTM

Hence, ATM ≤m PrimesTM
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ATM ≤m PrimesTM

Let P be a decider for Primes (?). Let f be the function computed by
the following TM

Algorithm 42 ( F )

on input 〈M,w〉, output BM,w

Definition 43 ( BM,w )
On input x

Emulate P(x) and Accept if P accepts

Emulate M(w) and Accept if M accepts

f is computable
f does a correct mapping reduction:

I 〈M,w〉 ∈ ATM =⇒ L(M ′) = Primes
I 〈M,w〉 /∈ ATM =⇒ L(M ′) = N 6= Primes

Hence ATM ≤m PrimesTM =⇒ PrimesTM /∈ RE

Question 44
What property of Primes have we used?
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